Statistik - Biostatistik

Details

ID 1253012
Dauer 5.0 Tage
Methoden Vortrag mit Beispielen und Übungen.
Vorwissen Allgemeine Kenntnisse der Mathematik
Zielgruppe Forscher/innen und Datenanalysten der Biowissenschaften

Ziele

Datensätze beschreiben
Lernen Sie, mit Lage- und Streuungsmaßen Datensätze zu beschreiben
Zusammenhängen aufdecken
Weisen Sie Zusammenhänge zwischen Datenreihen nach
Statistische Modelle entwickeln
Verwenden Sie Regression, um Daten in Modellen zu erklären
Rechnen mit Wahrscheinlichkeiten
Setzen Sie induktive Statistik für Wahrscheinlichkeiten ein
Hypothesen testen und nachweisen
Sehen Sie, wie Sie Hypothesen über die Grundgesamtheit prüfen
Experimente planen und analysieren
Setzen Sie erprobte Verfahren für Testreihen und ihre Analysen ein

Übersicht

Dieses Seminar in die Biostatistik vermittelt kompakt und verständlich alle benötigten Grundlagen für die statistische Analyse in den Biowissenschaften. Viele konkrete Beispiele stellen den Bezug zur Praxis der biologischen Forschungsarbeit her. Mathematische oder statistische Vorkenntnisse sind nicht erforderlich, sondern werden im Seminar erarbeitet. Alle Methoden und Verfahren werden an Beispieldaten illustriert. Die praktische Umsetzung biostatistischer Methoden wird über R und auch MS Excel dargestellt. Die Teilnehmer/innen lernen an Beispieldatensätzen die Themen a) Beschreibende Statistik, b) Wahrscheinlichkeitstheorie, c) Schätzung unbekannter Parameter, d) Formulieren und Prüfen von Hypothesen, e) Statistische Tests, f) Korrelations- und Regressionsanalyse, g) Varianzanalyse und f) Biostatistische Versuchsplanung. Auf diese Weise können die Teilnehmer/innen sich leicht die Grundlagen der Biostatistik erarbeiten und diese gezielt in ihren eigenen Projekten anwenden.

Termine

OPEN
INHOUSE

Zurzeit stehen keine offenen Termine zur Verfügung. Nutzen Sie alternativ die Inhouse‑Option.

Lernen Sie anhand maßgeschneiderter Beispiele und Inhalte – passgenau für Ihre Anforderungen.

Ihre Vorteile im Überblick

  • Flexibles Wunschdatum
  • Maßgeschneiderte Inhalte
  • Intensiver Austausch
  • Hoher Praxisbezug

Comelio Medien

Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.

Themen

  • Deskriptive Statistik nutzen, um Daten zu beschreiben
  • Wahrscheinlichkeitstheorie verstehen und anwenden
  • Zusammenhänge nachweisen und statistische Modelle bauen
  • Eigenschaften von Daten prüfen und nachweisen
  • Experimente planen und analysieren

Beschreibung

Lernen Sie statistische Verfahren anhand von biowissenschaftlichen Fragestellungen und lernen Sie spezielle Techniken kennen, die bei der Forschung auftreten.

Services

  • Mittagessen / Catering
  • Hilfe bei Hotel / Anreise
  • Comelio-Zertifikat
  • Flexibel: Bis einen Tag vorher kostenlos stornieren
Service-Kaffeekanne

Inhalt

Einführung
Biostatistik als Bestandteil biowissenschaftlicher Forschung - Population und Stichprobe - Merkmale und Skalenarten
Beschreibende Statistik eines Merkmals
Darstellung der Daten in Tabellen - Grafische Darstellung der Daten: Balkendiagramm - Kreisdiagramm - Histogramm - Polygon - Summenhistogramm - Summenpolygon
Wahrscheinlichkeitstheorie
Grundmodell der Wahrscheinlichkeitstheorie: Zufällige Ereignisse und deren Verknüpfung, Klassische Definition der Wahrscheinlichkeit, Axiomatische Definition der Wahrscheinlichkeit, Rechnen mit Wahrscheinlichkeiten - Zufallsvariablen und ihre Verteilung: Grundbegriffe, Diskrete Zufallsvariablen, Stetige Zufallsvariablen, Verteilungsparameter - Spezielle Verteilungen: Diskrete Verteilungen, Stetige Verteilungen
Schätzung unbekannter Parameter
Punktschätzungen - Bereichsschätzungen: Verteilung von Punktschätzungen, Konfidenzintervalle
Formulieren und Prüfen von Hypothesen
Inhaltliche und statistische Hypothesen: Klassifikation inhaltlicher Hypothesen, Statistische Alternativhypothesen, Statistische Nullhypothesen - Fehlerarten bei statistischen Entscheidungen - Prüfung statistischer Hypothesen: Der p-Wert, Einseitige und zweiseitige Fragestellungen, Statistische Signifikanz - Ablauf statistischer Tests - Monte-Carlo-Studien und die Bootstrap-Technik
Ausgewählte statistische Tests
Parametrische Tests für normalverteilte Merkmale: Vergleich eines Mittelwerts mit einem bekannten Wert, Vergleich zweier Mittelwerte bei unabhängigen Stichproben, Vergleich zweier Mittelwerte bei verbundenen Stichproben, Äquivalenztests, Überprüfung der Voraussetzungen - Tests für ordinalskalierte Merkmale: Vergleich zweier Verteilungen bei unabhängigen Stichproben, Vergleich zweier Verteilungen für verbundene Stichproben - Tests für nominalskalierte (dichotome) Merkmale: Vergleich zweier Wahrscheinlichkeiten bei unabhängigen Stichproben, Vergleich zweier Wahrscheinlichkeiten bei verbundenen Stichproben
Korrelations- und Regressionsanalyse
Korrelationsanalyse metrischer Merkmale: Grafische Veranschaulichung bivariater Zusammenhänge, Produkt-Moment-Korrelation, Interpretation von Korrelationen - Korrelationsanalyse ordinalskalierter Merkmale - Korrelationsanalyse nominalskalierter Merkmale - Einfache lineare Regression: Modell und Voraussetzungen, Schätzung der linearen Regressionsfunktion, Varianzzerlegung und Bestimmtheitsmaß, Konfidenzintervalle und Tests - Partielle Korrelationsanalyse - Multiple lineare Regression: Modell und Voraussetzungen, Schätzung der multiplen linearen Regressionsfunktion, Multiples Bestimmtheitsmaß und Tests, Multikollinearität und optimale Merkmalsmengen
Varianzanalyse
Einfaktorielle Varianzanalyse (Modell I): Modell, Voraussetzungen und statistische Hypothesen, Quadratsummenzerlegung und Signifikanzprüfung, Multiple Vergleiche - Zweifaktorielle Varianzanalyse (Modell I): Modell, Voraussetzungen und statistische Hypothesen, Quadratsummenzerlegung und Signifikanzprüfung - Varianzanalyse mit zufälligen Effekten (Modell II): Modell, Voraussetzungen und statistische Hypothesen, Schätzung der Varianzkomponenten und Signifikanz prüfung - Rangvarianzanalyse für ordinalskalierte Merkmale: Globalvergleich der Rangvarianzanalyse, Multiple Vergleiche
Biostatistische Versuchsplanung
Bedeutung der Versuchsplanung in der biowissenschaftlichen Forschung - Grundlegende Aspekte der Versuchsplanung: Varianzquellen in biowissenschaftlichen Untersuchungen, Allgemeine Prinzipien der Versuchsplanung, Typen von Stichproben, Versuchspläne - Bestimmung optimaler Stichprobenumfänge

Dozent/in