R - Data Mining

Details
ID | 1252816 |
Dauer | 2.0 Tage |
Methoden | Vortrag mit Beispielen und Übungen. |
Vorwissen | Allgemeine Kenntnisse der Mathematik |
Zielgruppe | Datenanalysten |
Ziele
Data Mining verstehen
Verstehen Sie die Philosophie von Data Mining und den Data Mining-KreislaufAssoziationsanalyse einsetzen
Führen Sie eine Warenkorbanalyse durch und erkennen Sie wesentliche HäufungenDaten klassifizieren
Nutzen Sie Entscheidungsbäume, Naïve Bayes und Bayes Netze, um Gruppen zu klassifizierenDaten mit komplexen Modellen segmentieren
Verwenden Sie Künstliche Neuronale Netze und Support Vector Machines, um Gruppen zu trennenCluster-Analyse für Segmentierung von Daten nutzen
Erkennen Sie Gemeinsamkeiten und Gruppen in Ihren DatenR und RStudio für Data Mining verwenden
Nutzen Sie in R typische Data Mining-PaketeÜbersicht
Data Mining übertrifft einfache Analysetechniken an Wirkungsweise und Ergebnissen und bietet eine Methodik, die auf erweiterten statistischen und algorithmischen Konzepten des maschinellen Lernens beruht. Es unterstützt die Entwicklung und Gewinnung von wertvollem Unternehmenswissen anhand komplexer Analyseverfahren. Dieses Seminar macht Sie mit den Konzepten von Data Mining in R mit RStudio vertraut und hilft Ihnen bei der Entscheidung und Bewertung in Projekten, die Data Mining einführen helfen. Das Seminar zeigt Ihnen mit Theorie und Beispielen, welche typischen Analyseverfahren in R zur Verfügung stehen und wie gängige Algorithmen funktionieren. Es sind grundlegende Kenntnisse der Mathematik und Statistik notwendig, die bei Bedarf allerdings auch an den entsprechenden Stellen im Seminar noch einmal wiederholt werden können.
Termine
Wir überarbeiten gerade unsere Webseite und die Seminare. Neue Termine gibt es erst ab 2025. Wir bieten dieses Seminar weiterhin als Inhouse-Seminar für Sie und Ihr Team an.

Comelio Medien
Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.
Themen
- Data Mining-Ansatz und Philosophie verstehen
- R und RStudio für Data Mining einsetzen
- Wichtige R-Pakete für Data Mining kennenlernen
- Assoziationsanalyse für einfache Mustererkennung nutzen
- Daten klassifizieren mit Entscheidungsbäumen, Naïve Bayes und Bayes Netzen
- Daten klassifizieren mit Künstlichen Neuronalen Netzen und Support Vector Machines
- Cluster-Analyse für Segmentierung von Daten nutzen
Beschreibung
R bietet für multivariate Analysen und Data Mining eine Vielzahl an Paketen. Nutzen Sie R für Data Mining, um Muster in Daten zu erkennen wie bspw. Gruppen, wichtige Variablen oder Zusammenhänge, die für Klassifikation und Vorhersage genutzt werden können. Dieses Seminar zeigt Ihnen, wie Sie mit RStudio und den gängigen R-Paketen viele Data Mining-Verfahren durchführen können. Es vermittelt Ihnen sowohl die mathematischen Hintergründe der einzelnen Verfahren und zeigt, wie Sie Data Mining praktisch mit R, RStudio und R Data Miner (Rattle) durchführen können.Services
- Mittagessen / Catering
- Hilfe bei Hotel / Anreise
- Comelio-Zertifikat
- Flexibel: Bis einen Tag vorher kostenlos stornieren

Inhalt
Data Mining-Grundlagen
Statistik, multivariate Statistik und Data Mining – Data Mining-Kreislauf - Daten-Vorverarbeitung: Beschreibende Datenaggregation, Datenbereinigung, Datenintegration und –transformation – Datenreduktion – Diskretisierung und Konzept-Hierarchien – Data Mining und Business Intelligence: Datenbanken, Data Warehouses und OLAP als Basis für Data MiningData Mining mit der Assoziationsanalyse
Suchen von häufigen Kombinationen (Frequent Itemset Mining) – Apriori-Algorithmus - Assoziationsregeln und Assoziationsanalyse - WarenkorbanalyseData Mining mit Entscheidungsbäumen
Ableitung von Entscheidungsbäumen – Auswahl von Attributen – Beschneidung von Bäumen – Ableitung von Regeln - Gütemaße und Vergleich von ModellenData Mining mit Wahrscheinlichkeitstheorie
Wahrscheinlichkeitstheorie und Bayes Theorem –Naïve Bayes-Algorithmus – Bayes NetzeFortgeschrittene Data Mining-Verfahren für Klassifikation
Künstliche neuronale Netze und der Backpropagation-Algorithmus - Support Vector Machines für linear und nicht-linear trennbare Daten – Klassifikation mit Assoziationsanalyse – Lazy und Eager LearnersCluster-Analyse
Einführung in die Cluster Analyse – Ähnlichkeits- und Distanzmessung - Varianten und grundlegende Techniken – Partitionierende Methoden: k-Means-Verfahren - Hierarchische Methoden: agglomerative und divisive Verfahren – Weitere Verfahren: Dichte- und Grid-basierte MethodenDozent/in
Unser Statistik- und Data-Mining-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken und als Business Intelligence-Berater. Zu seinen Kunden zählen Marktforschungsunternehmen oder Behörden wie der Deutsche Bundesrat sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung.Veröffentlichungen
- Grundlagen empirische Sozialforschung (Comelio Medien)
978-3-939701-23-1 - System und Systematik von Fragebögen (Comelio Medien)
978-3-939701-26-2 - Oracle SQL (Comelio Medien)
978-3-939701-41-5 - SQL Server 2012: Data Mining und multivariate Verfahren (Comelio Medien)
978-3-939701-85-9 - SQL und relationale Datenbanken (Comelio Medien)
978-3-939701-52-1