Inhalt
Einführung
Medizinische Statistik als Bestandteil medizinischer Forschung - Population und Stichprobe - Merkmale und Skalenarten
Beschreibende Statistik eines Merkmals
Darstellung der Daten in Tabellen - Grafische Darstellung der Daten: Balkendiagramm, Kreisdiagramm, Histogramm, Polygon, Summenhistogramm, Summenpolygon
Wahrscheinlichkeitstheorie
Grundmodell der Wahrscheinlichkeitstheorie: Zufällige Ereignisse und deren Verknüpfung, Klassische Definition der Wahrscheinlichkeit, Axiomatische Definition der Wahrscheinlichkeit, Rechnen mit Wahrscheinlichkeiten - Zufallsvariablen und ihre Verteilung: Grundbegriffe, Diskrete Zufallsvariablen, Stetige Zufallsvariablen, Verteilungsparameter - Spezielle Verteilungen: Diskrete Verteilungen, Stetige Verteilungen
Schätzung unbekannter Parameter
Punktschätzungen - Bereichsschätzungen: Verteilung von Punktschätzungen, Konfidenzintervalle
Formulieren und Prüfen von Hypothesen
Inhaltliche und statistische Hypothesen: Klassifikation inhaltlicher Hypothesen, Statistische Alternativhypothesen, Statistische Nullhypothesen - Fehlerarten bei statistischen Entscheidungen - Prüfung statistischer Hypothesen: Der p-Wert, Einseitige und zweiseitige Fragestellungen, Statistische Signifikanz - Ablauf statistischer Tests
Ausgewählte statistische Tests
Parametrische Tests für normalverteilte Merkmale: Vergleich eines Mittelwerts mit einem bekannten Wert, Vergleich zweier Mittelwerte bei unabhängigen Stichproben, Vergleich zweier Mittelwerte bei verbundenen Stichproben, Äquivalenztests, Überprüfung der Voraussetzungen - Tests für ordinalskalierte Merkmale: Vergleich zweier Verteilungen bei unabhängigen Stichproben, Vergleich zweier Verteilungen für verbundene Stichproben - Tests für nominalskalierte (dichotome) Merkmale: Vergleich zweier Wahrscheinlichkeiten bei unabhängigen Stichproben, Vergleich zweier Wahrscheinlichkeiten bei verbundenen Stichproben
Analyse-Techniken für verschiedene Skalen
Analyse von quantitativen Zielgrößen: Korrelationsanalyse, Grafische Veranschaulichung bivariater Zusammenhänge, Produkt-Moment-Korrelation, Interpretation von Korrelationen - Einfache lineare Regression: Modell und Voraussetzungen, Schätzung der linearen Regressionsfunktion, Varianzzerlegung und Bestimmtheitsmaß, Konfidenzintervalle und Tests - Analyse von qualitativen Zielgrößen: Korrelationsanalyse ordinalskalierter und nominalskalierter Merkmale - Analyse von Zähldaten
Spezielle medizinische Analysen
Analyse von Überlebenszeiten: Links- und doppelt-zensiertes sowie Intervall-zensierte Beobachtungen, Überlebensfunktion, Hazard-Rate und Hazard-Funktion, Event-Time-Ratio, Weibull-Verteilung, Cox- und Weibull-Regression - Konkurrierende Risiken: Aalen-Johansen-Schätzer, Inzidenzfunktionen, Mehrstadienmodelle
Klassifikation und Prognose
Prävalenz - Fagan-Nomogramm - ROC-Kurven und Binormale ROC-Kurven - Prognostischer und prädiktiver Faktor
Spezielle Fragestellungen
Beurteilung der Zuverlässigkeit von Messungen: Intra-Raster, Inter-Raster, Test-Retest - Klinische Studien: Dosis-Wirkungs-Experiment, Einfluss von Gruppengrößen, Interaktionstest - Epidemiologische Studien: Confounding, Kohortenstudien, Fall-Kontroll-Studien - Meta-Analyse: Forest-Plot, Meta-Regressionsplot, Funnel-Plot
Dozent/in
Unser Trainer für Statistik und Data-Mining mit R Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken, Datenanalyse und als Berater für statistische Analyse mit R. Teilnehmer/innen seiner R-Seminare sind Betriebswirte / Volkswirtschaftler, Ingenieure und Doktoranden, die für Statistik und Data Mining R einsetzen wollen.
Veröffentlichungen
- Grundlagen empirische Sozialforschung ISBN 978-3-939701-23-1
- System und Systematik von Fragebögen ISBN 978-3-939701-26-2
- Oracle SQL ISBN 978-3-939701-41-5
- SQL Server 2012: Data Mining und multivariate Verfahren ISBN 978-3-939701-85-9
- SQL und relationale Datenbanken ISBN 978-3-939701-52-1
Projekte
Als Berater konzipiert Herr Skulschus Analysesysteme auf Basis von relationalen Datenbanken und entwickelt dann statistische Modelle und Analysen mit R-Programmierung. Zu seinen Kunden zählen Marktforschungsunternehmen, Marketing-Abteilungen sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung oder auch Forschungseinrichtungen.
Forschung
Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.