Statistik - Multivariate Verfahren I

Details
ID | 1252623 |
Dauer | 3.0 Tage |
Methoden | Vortrag mit Beispielen und Übungen. |
Vorwissen | Grundlagen der Statistik |
Zielgruppe | Datenanalysten |
Ziele
Multivariate Daten beschreiben
Komplexe Datensätze darstellen und analysierenStrukturen entdecken
Cluster und Faktoren mit entdeckenKategoriale Daten analysieren
ANOVA und Logistische Regression in R nutzenMetrische Daten analysieren
Nutzen Sie die Regressionanalyse und erstellen Sie lineare ModelleWerkzeuge kennenlernen
R, RStudio, FactoMineR, RCommander und R Data Miner (Rattle)Übersicht
Mit Multivariaten Verfahren (Multivariate Analyse(methoden), Abk.: MVA) werden multivariat verteilte statistische Variablen untersucht. Man betrachtet hier nicht eine Variable isoliert (univariat verteilt), sondern das Zusammenwirken mehrerer Variablen zugleich und damit ihre Abhängigkeitsstruktur. Multivariate Verfahren lassen sich gliedern in \"Strukturprüfende Verfahren\" und \"Strukturentdeckende Verfahren\". Das Seminar behandelt 7 wichtige Verfahren der multivariaten Analysemethoden. Dies sind Cluster-, Diskriminanz- und Explorative Faktorenanalyse, Kreuztabellierung und Kontingenzanalyse, Logistische Regression, Regressionsanalyse und Varianzanalyse. Sie lernen, multivariate Analysen in R und RStudio und auch mit RCommander und R Data Miner (Rattle) durchführen.
Termine
Wir überarbeiten gerade unsere Webseite und die Seminare. Neue Termine gibt es erst ab 2025. Wir bieten dieses Seminar weiterhin als Inhouse-Seminar für Sie und Ihr Team an.

Comelio Medien
Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.
Themen
- Metrische Daten mit Regressionsanalyse und Diskriminanzanalyse in R analysieren
- Kategoriale Daten mit Kontingenzanalyse, ANOVA und Logistische Regression in R analysieren
- Faktorenanalyse und Clusteranalyse in R nutzen
- Daten in R und RStudio verarbeiten und visualisieren
- Analysen in RCommander, FactoMineR und R Data Miner (Rattle) durchführen
Beschreibung
Nutzen Sie fortgeschrittene statistische Techniken, um in R statistische Modelle zu entwickeln, Zusammenhänge aufzudecken und wichtige Variablen zu finden.Services
- Mittagessen / Catering
- Hilfe bei Hotel / Anreise
- Comelio-Zertifikat
- Flexibel: Bis einen Tag vorher kostenlos stornieren

Inhalt
Multiple Regressionsanalyse
Wie stark ist der als linear unterstellte Zusammenhang zwischen metrisch-skalierten Variablen? – Modellformulierung – Schätzung der Regressionsfunktion – Prüfung der Regressionsfunktion – Prüfung der Regressionskoeffizienten – Prüfung der ModellprämissenKontingenzanalyse (Kreuztabellierung)
Besteht ein statistisch signifikanter Zusammenhang zwischen zwei nominal-skalierten Variablen? – Erstellung der Kreuztabelle – Ergebnisinterpretation – Prüfung der ZusammenhängeVarianzanalyse (ANOVA)
Wie gut kann eine metrisch-skalierte abhängige Variable durch eine nominal skalierte unabhängige Variable erklärt werden? – Problemformulierung – Analyse der Abweichungsquadrate – Prüfung der statistischen UnabhängigkeitLogistische Regression
Mit welcher Wahrscheinlichkeit können Objekte einer bestimmten Gruppe zugeordnet werden? – Modellformulierung – Schätzung der logistischen Regressionsfunktion – Interpretation der Regressionskoeffizienten – Prüfung des Gesamtmodells – Prüfung der MerkmalsvariablenDiskriminanzanalyse
Welche Variablen können gegebene Objektgruppen signifikant voneinander unterscheiden? – Definition der Gruppen – Formulierung, Schätzung und Prüfung der Diskriminanzfunktion – Prüfung der Merkmalsvariablen – Klassifikation neuer ElementeExplorative Faktorenanalyse
Wie können metrisch-skalierte Variablen zu hypothetischen Größen (Faktoren) zusammengefasst werden? – Variablenauswahl und Korrelationsmatrix – Extraktion der Faktoren – Bestimmung der Kommunalitäten – Zahl der Faktoren – Faktorinterpretation – Bestimmung der FaktorenwerteClusteranalyse
Wie können Objekte, die durch verschiedene Merkmale beschrieben sind, zu homogenen Gruppen zusammenfasst werden? – Bestimmung der Ähnlichkeiten – Auswahl des Fusionsalgorithmus – Bestimmung der ClusteranzahlDozent/in
Unser Statistik- und Data-Mining-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken und als Business Intelligence-Berater. Zu seinen Kunden zählen Marktforschungsunternehmen oder Behörden wie der Deutsche Bundesrat sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung.Veröffentlichungen
- Grundlagen empirische Sozialforschung (Comelio Medien)
978-3-939701-23-1 - System und Systematik von Fragebögen (Comelio Medien)
978-3-939701-26-2 - Oracle SQL (Comelio Medien)
978-3-939701-41-5 - SQL Server 2012: Data Mining und multivariate Verfahren (Comelio Medien)
978-3-939701-85-9 - SQL und relationale Datenbanken (Comelio Medien)
978-3-939701-52-1