Modellierung - Data Mining

Details
ID | 1252818 |
Dauer | 2.0 Tage |
Methoden | Vortrag mit Beispielen und Übungen. |
Vorwissen | Allgemeine Kenntnisse der Mathematik |
Zielgruppe | Datenanalysten |
Ziele
Data Mining verstehen
Verstehen Sie die Philosophie von Data Mining und den Data Mining-Kreislauf anhand der Software WekaAssoziationsanalyse einsetzen
Führen Sie eine Warenkorbanalyse durch und erkennen Sie wesentliche HäufungenDaten klassifizieren
Nutzen Sie Entscheidungsbäume, Naïve Bayes und Bayes Netze, um Gruppen zu klassifizierenDaten mit komplexen Modellen segmentieren
Verwenden Sie Künstliche Neuronale Netze und Support Vector Machines, um Gruppen zu trennenCluster-Analyse für Segmentierung von Daten nutzen
Erkennen Sie Gemeinsamkeiten und Gruppen in Ihren DatenÜbersicht
Data Mining übertrifft einfache Analysetechniken an Wirkungsweise und Ergebnissen und bietet eine Methodik, die auf erweiterten statistischen und algorithmischen Konzepten des maschinellen Lernens beruht. Dieses Seminar macht Sie mit den Konzepten von Data Mining vertraut und hilft Ihnen bei der Entscheidung und Bewertung in Projekten, die Data Mining einführen helfen. Das Seminar zeigt Ihnen anhand von Theorie und Beispielen in einem Data Mining-Werkzeug nachvollzogen werden können, welche typischen Analyseverfahren zur Verfügung stehen und wie gängige Algorithmen in diesen Verfahren funktionieren. Es sind grundlegende Kenntnisse der Mathematik und Statistik notwendig, die bei Bedarf allerdings auch an den entsprechenden Stellen im Seminar noch einmal wiederholt werden können. Die Theorie wird anhand von Vorträgen und Diskussionen vermittelt und durch praktische Übungen mit dem Open Source-Werkzeug Weka der Universität Waikato ergänzt.
Termine
Wir überarbeiten gerade unsere Webseite und die Seminare. Neue Termine gibt es erst ab 2025. Wir bieten dieses Seminar weiterhin als Inhouse-Seminar für Sie und Ihr Team an.

Comelio Medien
Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.
Themen
- Data Mining-Ansatz und Philosophie verstehen
- Praktische Data Mining-Aufgaben mit der Weka-Software umsetzen
- Assoziationsanalyse für einfache Mustererkennung nutzen
- Daten klassifizieren mit Entscheidungsbäumen, Naïve Bayes und Bayes Netzen
- Daten klassifizieren mit Künstlichen Neuronalen Netzen und Support Vector Machines
- Cluster-Analyse für Segmentierung von Daten nutzen
Beschreibung
Informieren Sie sich in diesem Seminar, was Data Mining ist und wie Sie Fragen zu und über Ihre Daten mit Data Mining beantworten können. Nutzen Sie Data Mining im grafischen Open Source-Werkzeug Weka der Universität von Waikato, um Muster in Daten zu erkennen wie bspw. Gruppen, wichtige Variablen oder Zusammenhänge, die für Klassifikation und Vorhersage genutzt werden können.Services
- Mittagessen / Catering
- Hilfe bei Hotel / Anreise
- Comelio-Zertifikat
- Flexibel: Bis einen Tag vorher kostenlos stornieren

Inhalt
Data Mining-Grundlagen
Statistik, multivariate Statistik und Data Mining – Data Mining-Kreislauf - Daten-Vorverarbeitung: Beschreibende Datenaggregation, Datenbereinigung, Datenintegration und –transformation – Datenreduktion – Diskretisierung und Konzept-Hierarchien – Data Mining und Business Intelligence: Datenbanken, Data Warehouses und OLAP als Basis für Data Mining - Die Open Source-Software Weka als GUI für Data Mining verwendenData Mining mit der Assoziationsanalyse
Suchen von häufigen Kombinationen (Frequent Itemset Mining) – Apriori-Algorithmus - Assoziationsregeln und Assoziationsanalyse - WarenkorbanalyseData Mining mit Entscheidungsbäumen
Ableitung von Entscheidungsbäumen – Auswahl von Attributen – Beschneidung von Bäumen – Ableitung von Regeln - Gütemaße und Vergleich von ModellenData Mining mit Wahrscheinlichkeitstheorie
Wahrscheinlichkeitstheorie und Bayes Theorem –Naïve Bayes-Algorithmus – Bayes NetzeFortgeschrittene Data Mining-Verfahren für Klassifikation
Künstliche neuronale Netze und der Backpropagation-Algorithmus - Support Vector Machines für linear und nicht-linear trennbare Daten – Klassifikation mit Assoziationsanalyse – Lazy und Eager LearnersCluster-Analyse
Einführung in die Cluster Analyse – Ähnlichkeits- und Distanzmessung - Varianten und grundlegende Techniken – Partitionierende Methoden: k-Means-Verfahren - Hierarchische Methoden: agglomerative und divisive Verfahren – Weitere Verfahren: Dichte- und Grid-basierte MethodenDozent/in
Unser Statistik- und Data-Mining-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken und als Business Intelligence-Berater. Zu seinen Kunden zählen Marktforschungsunternehmen oder Behörden wie der Deutsche Bundesrat sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung.Veröffentlichungen
- Grundlagen empirische Sozialforschung (Comelio Medien)
978-3-939701-23-1 - System und Systematik von Fragebögen (Comelio Medien)
978-3-939701-26-2 - Oracle SQL (Comelio Medien)
978-3-939701-41-5 - SQL Server 2012: Data Mining und multivariate Verfahren (Comelio Medien)
978-3-939701-85-9 - SQL und relationale Datenbanken (Comelio Medien)
978-3-939701-52-1