1 Comelio GmbH - IBM SPSS Statistics - Deskriptive und Induktive Statistik IBM Seminare Webinare Trainings Weiterbildungen Kurse

Data Science / Statistik / IBM / IBM SPSS Statistics / Deskriptive und Induktive Statistik

IBM SPSS Statistics - Deskriptive und Induktive Statistik



ID 1252630
Klassenraum 5 Tage 9:00-16:30
Webinar 5 Tage 9:00-16:30
Methode Vortrag mit Beispielen und Übungen.
Vorwissen Allgemeine Kenntnisse der Mathematik
Zielgruppe Datenanalysten


  • Deskriptive Statistik nutzen, um Daten zu beschreiben
  • Wahrscheinlichkeitstheorie verstehen und anwenden
  • Zusammenhänge nachweisen und statistische Modelle bauen
  • Eigenschaften von Daten prüfen und nachweisen


Datensätze beschreiben
Lernen Sie, mit Lage- und Streuungsmaßen Datensätze zu beschreiben
Zusammenhängen aufdecken
Weisen Sie Zusammenhänge zwischen Datenreihen nach
Statistische Modelle entwickeln
Verwenden Sie Regression, um Daten in Modellen zu erklären
Rechnen mit Wahrscheinlichkeiten
Setzen Sie induktive Statistik für Wahrscheinlichkeiten ein
Hypothesen testen und nachweisen
Sehen Sie, wie Sie Hypothesen über die Grundgesamtheit prüfen


IBM SPSS Statistics Deskriptive und Induktive Statistik Training

Beschreibung

Lernen Sie, wie Sie in IBM SPSS Statistics mit deskriptiver Statistik Datenreihen strukturiert beschreiben und zusammenfassen, um dann mit induktiver Statistik Hypothesen aufstellen und beweisen.



Spezial

Daten aus Experimenten und Fragebögen erfolgreich analysieren lernen mit statistischer Methodik und konkreten Beispielen



IBM SPSS Statistics Deskriptive und Induktive Statistik Training

Services

  • Mittagessen / Catering
  • Hilfe bei Hotel / Anreise
  • Comelio-Zertifikat
  • Flexibel: Bis einen Tag vorher kostenlos stornieren

Übersicht

IBM SPSS Statistics Deskriptive und Induktive Statistik TrainingDie deskriptive Statistik ermöglicht es, vorliegende Daten in geeigneter Weise zu beschreiben und zusammenzufassen. Mit ihren Methoden verdichtet man quantitative Daten zu Tabellen, graphischen Darstellungen und Kennzahlen. Man lernt in einem ersten Teil Lagemaße (zentrale Tendenz einer Häufigkeitsverteilung, Mittelwert, Median, Modus oder Modalwert, Quantile (Quartile, Dezile), Schiefe und Exzess einer Verteilung) und die Streuungsmaße (Varianz, Standardabweichung, Variationsbreite/Spannweite, Interquartilbereiche, Mittlere absolute Abweichung) und Zusammenhangsmaße sowie Konzentrationsmaße kennen. In einem zweiten Teil lernen die TeilnehmerInnen dann die lineare und nicht-lineare Regressionsanalyse für metrische Daten kennen. Die induktive Statistik hingegen leitet aus den Daten einer Stichprobe Eigenschaften einer Grundgesamtheit ab. Die Wahrscheinlichkeitstheorie liefert die Grundlagen für die erforderlichen Schätz- und Testverfahren. Sie gibt der deskriptiven Statistik die Werkzeuge an die Hand, mit deren Hilfe diese aufgrund der beobachteten Daten begründete Rückschlüsse auf deren zu Grunde liegendes Verhalten ziehen kann. Im dritten Teil dieses Seminars lernen die TeilnehmerInnen zunächst die Wahrscheinlichkeitstheorie kennen und leiten dann aus Stichproben mit statistischen Testverfahren Informationen über die Grundgesamtheit ab.

Termine

Wir überarbeiten gerade unsere Webseite und die Seminare. Neue Termine gibt es erst ab 2025. Wir bieten dieses Seminar weiterhin als Inhouse-Seminar für Sie und Ihr Team an.

Inhalt

IBM SPSS Statistics Deskriptive und Induktive Statistik Seminar
Einführung in IBM SPSS Statistics

Daten und Import/Export - Vorbereitung der Metadaten / Codebook - Validierungsregeln - Ungewöhnliche Fälle identifizieren - Daten filtern, aggregrieren und transformieren - Befehlssyntax von SPSS - Aktionen in Skripten speichern und ausführen

Deskriptive Statistik

IBM SPSS-Prozedur "Deskriptive Statistiken" verstehen und verwenden - Maßzahlen der Häufigkeit: Mittelwerte (Modus, Zentralwert, Quantile, Arithmetisches / geometrisches / harmonisches Mittel - Streuungsmaße: Spannweite, Quartilsabstand, Mittlere absolute Abweichung, empirische Standardabweichung, Variationskoeffizient - Formparameter: Schiefemaße, Wölbungsmaße - Diagramme erstellen - IBM SPSS-Prozedur "Kreuztabellen" verstehen und verwenden - Prozedur "Zusammenfassen" einsetzen

Multivariate Statistik: Zusammenhänge, Modelle und Regression

Diagramme für multivariate Datensätze - IBM SPSS-Prozedur "Bivariate Korrelationen" - Koeffizienten bei nominal skalierten Merkmalen: Quadratische Kontingenz, Phi-Koeffizient, Kontingenzkoeffizient - Koeffizienten bei ordinal skalierten Merkmalen: Rangkorrelationskoeffizient nach Spearman - Koeffizienten bei metrisch skalierten Merkmalen: Empirische Kovarianz, Empirischer Korrelationskoeffizient nach Bravais-Pearson - IBM SPSS-Prozedur "Lineare Regression" für metrische Variablen: Modell erstellen, mit Gütemaßen und Residualanalyse bewerten, grafisch darstellen und verwenden - IBM SPSS-Prozedur "Kurvenanpassung" für lineare Modelle - Varianzanalyse (ANOVA) mit einem und mehreren Faktoren

Kurze Einführung in die Wahrscheinlichkeit

Grundlagen: Zufallsexperiment, Ergebnismenge und Ereignis, Zusammengesetzte Ereignisse, Absolute und relative Häufigkeiten - Wahrscheinlichkeitsbegriffe: Klassischer, statistischer und subjektiver Wahrscheinlichkeitsbegriff - Rechnen mit Wahrscheinlichkeiten: Axiome und ihre Folgerungen, Bedingte Wahrscheinlichkeit, Multiplikationssatz, Stochastische Unabhängigkeit, Satz der totalen Wahrscheinlichkeit, Bayessches Theorem - Kombinatorik: Permutationen, Kombinationen mit und ohne Wiederholung, Eigenschaften des Binomialkoeffizienten, Urnenmodell

Induktive Statistik: Wahrscheinlichkeitsverteilungen

Zufallsvariablen - Diskrete Verteilungen: Binomialverteilung, Poissonverteilung, Hypergeometrische Verteilung, Geometrische Verteilung - Stetige Verteilungen: Gleichverteilung, Exponentialverteilung, Normalverteilung - Maßzahlen: Erwartungswert, Mathematische Erwartung, Varianz - Grafische Darstellung von wichtigen Verteilungen

Induktive Statistik: Statistisches Testen

Intervallschätzungen: Konfidenzintervall für den Mittelwert und für die Varianz einer Normalverteilung sowie für den Anteilswert - Parametertests: Test für Mittelwert einer Normalverteilung, Test für Anteilswert, Fehler beim Testen, Test für Varianz, Differenztests für den Mittelwert und Anteilswert, Quotiententest für die Varianz - Verteilungstests: Chi-Quadrat-Anpassungstest, Chi-Quadrat-Unabhängigkeitstest (Kontingenztest)

Dozent/in

IBM SPSS Statistics Deskriptive und Induktive Statistik Trainer

Unser Statistik- und Data-Mining-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken und als Business Intelligence-Berater. Zu seinen Kunden zählen Marktforschungsunternehmen oder Behörden wie der Deutsche Bundesrat sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung.

Veröffentlichungen
  • Grundlagen empirische Sozialforschung ISBN 978-3-939701-23-1
  • System und Systematik von Fragebögen ISBN 978-3-939701-26-2
  • Oracle SQL ISBN 978-3-939701-41-5
  • SQL Server 2012: Data Mining und multivariate Verfahren ISBN 978-3-939701-85-9
  • SQL und relationale Datenbanken ISBN 978-3-939701-52-1
Projekte

Als Berater und Projektleiter konzipiert Herr Skulschus Business Intelligence-Systeme auf Basis von OLAP und Data Warehouse-Technologien mit MS SQL Server und Oracle mit Berichtskomponenten im Intranet oder MS Excel, statistische Analysen und Data Mining-Modulen. Je nach Aufgabe setzt er R, IBM SPSS oder Minitab ein.

Forschung

Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.

IBM SPSS Statistics Deskriptive und Induktive Statistik Trainer