Statistik - Analyse kategorialer Daten

Details

ID 1252625
Dauer 2.0 Tage
Methoden Vortrag mit Beispielen und Übungen.
Vorwissen Allgemeine Kenntnisse der Mathematik
Zielgruppe Datenanalysten

Übersicht

Die Seminarteilnehmer erhalten eine anwendungsorientierte Einführung in Logit-Modellierung und kategoriale Regression. Das Seminar behandelt Modelle zur Analyse kategorialer Daten. Kategoriale Daten sind Variablen, die eine begrenzte Anzahl von Ausprägungen (Kategorien) haben. Unter logistischer Regression oder Logit-Modell versteht man dann Regressionsanalysen zur (meist multivariaten) Modellierung der Verteilung diskreter abhängiger Variablen. Damit lassen sich Gruppenzugehörigen und Wahrscheinlichkeiten für Ereignisse bestimmen. Bei vielen der in Umfrageforschung und amtlicher Statistik erhobenen Merkmale handelt es sich um kategoriale Daten. In diesem Seminar lernen Sie die Logit-Regression und darauf aufbauende Alternativmodelle kennen. Zusätzlich lernen Sie, Kontingenz-/Kreuztabellen zu untersuchen, um Abhängigkeiten zwischen kategorialen Variablen zu untersuchen.

Termine

OPEN
INHOUSE

Zurzeit stehen keine offenen Termine zur Verfügung. Nutzen Sie alternativ die Inhouse‑Option.

Lernen Sie anhand maßgeschneiderter Beispiele und Inhalte – passgenau für Ihre Anforderungen.

Ihre Vorteile im Überblick

  • Flexibles Wunschdatum
  • Maßgeschneiderte Inhalte
  • Intensiver Austausch
  • Hoher Praxisbezug

Comelio Medien

Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.

Beschreibung

Die Analyse von Tabellen und kategorialen Daten ist ein großes Gebiet mit vielen Werkzeugen. Verschaffen Sie sich mit diesem Statistik-Seminar einen Überblick über logistische Regression, das Logit-Modell und der Kontingenzanalyse.

Services

  • Mittagessen / Catering
  • Hilfe bei Hotel / Anreise
  • Comelio-Zertifikat
  • Flexibel: Bis einen Tag vorher kostenlos stornieren
Service-Kaffeekanne

Inhalt

Logistische Regression und Logit-Modell für binäre abhängige Größen
Logit-Modelle für eine metrische Einflussgröße - Modelle für linear spezifizierte Einflussgrößen - Logit-Modelle bei kategorialen Einflussgrößen - Das lineare Logit-Modell ohne Interaktion - Logit-Modell und Alternativen
Schätzung, Modellanpassung und Einflussgrößen
Parameterschätzung für Regressionsmodelle - Anpassungsgüte von Modellen - Residualanalyse - Überprüfung der Relevanz von Einflussgrößen - Devianz-Analyse - Erklärungswert von Modellen
Alternative Modellierung von Response und Einflussgrößen
Konzeptioneller Hintergrund binärer Regressionsmodelle - Modelltypen - Modellierung von Interaktionswirkungen - Abweichung von der Binomialverteilung
Multinominale Modelle für ungeordnete Kategorien
Modellbildung bei mehrkategorialer abhängiger Variable - Das multinominale Logit-Modell - Einfache Verzweigungsmodelle - Modellierung als Wahlmodell der Nutzenmaximierung - Schätzen und Testen
Regression mit ordinaler abhängiger Variable
Das Schwellenwert- oder kumulative Modell - Das sequenzielle Modell - Schätzen und Testen
Zähldaten und die Analyse von Kontingenztafeln: das loglineare Modell
Die Poisson-Verteilung - Poisson-Regression - Poisson-Regression mit Dispersion - Analyse von Kontingenztafeln
Nonparametrische Regression
Glättungsverfahren: Lokale Regression für binäre abhängige Variable, Ansätze mit Penalisierung, Semiparametrische Erweiterung durch das partiell lineare Modell, Generalisierte additive Modell, Schätzalgorithmen - Klassifikations- und Regressionsbäume: Verzweigungen und Verzweigungskriterien, Baumgröße
Kategoriale Prognose und Diskriminanzanalyse
Bayes-Zuordnung als diskriminanzanalytisches Verfahren: Bayes-Zuordnung und Fehlerraten, Fehlklassifikationswahrscheinlichkeiten, Bayes-Regel und Diskriminanzfunktionen, Logit-Modell und normalverteilte Merkmale, Logit-Modell und binäre Merkmale, Kostenoptimale Bayes-Zuordnung - Geschätze Zuordnungsregeln: Stichproben und geschätzte Zuordnungsregeln, Prognosefehler

Dozent/in