IBM SPSS Statistics - Zeitreihenanalyse

Details
ID | 1252617 |
Dauer | 2.0 Tage |
Methoden | Vortrag mit Beispielen und Übungen. |
Vorwissen | Allgemeine Kenntnisse der Mathematik |
Zielgruppe | Datenanalysten |
Ziele
Zeitreihen mit IBM SPSS Statistics beschreiben
Beschreiben Sie die innere Struktur von ZeitreihenZeitreihen glätten und interpolieren
Glätten Sie Zeitreihen und nutzen Sie die Glättung für PrognosenDeterministische Modelle aufbauen
Nutzen Sie die Regressionsanalyse, um ein Modell für eine Zeitreihen zu bauenARIMA-Modelle erstellen
Verwenden Sie autoregressive Modelle für komplexe ZeitreihenanalyseÜbersicht
Eine Zeitreihe ist eine zeitabhängige Folge von Datenpunkten. Typische Beispiele für Zeitreihen sind makroökonomische Größen, marktbezogene Daten sowie auch technische Messdaten. Die Zeitreihenanalyse beschäftigt sich mit der mathematisch-statistischen Analyse von Zeitreihen und der Vorhersage ihrer künftigen Entwicklung. Sie ist eine Spezialform der Regressionsanalyse. Das Zeitreihenanalyse-Seminar mit IBM SPSS Statistics zeigt eine Auswahl an Methoden, Zeitreihenanalysen durchzuführen. Im ersten Teil lernen Sie, wie Sie eine Zeitreihe beschreiben und in zentralen Kenngrößen zusammenfassen können. Der zweite Teil stellt die univariate Zeitreihenanalyse vor. Sie beinhaltet die Zerlegung einer Zeitreihe sowie die Ableitung von (autoregressiven) Regressionsmodellen mit ARIMA-Modellen.
Termine
Wir überarbeiten gerade unsere Webseite und die Seminare. Neue Termine gibt es erst ab 2025. Wir bieten dieses Seminar weiterhin als Inhouse-Seminar für Sie und Ihr Team an.

Comelio Medien
Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.
Themen
- Zeitreihen mit IBM SPSS Statistics strukturiert beschreiben und darstellen
- Einfache Modelle durch Glättung und Interpolation aufbauen
- Deterministische Modelle für Erklärung und Prognose entwickeln
- ARIMA-Modelle bestimmen und nutzen
Beschreibung
Nutzen Sie IBM SPSS Statistics, um Zeitreihen zu beschreiben und zu verarbeiten sowie mit Kompponentenmodellen und ARIMA zu modellieren.Services
- Mittagessen / Catering
- Hilfe bei Hotel / Anreise
- Comelio-Zertifikat
- Flexibel: Bis einen Tag vorher kostenlos stornieren

Inhalt
Arbeiten mit Zeitreihen in IBM SPSS Statistics
Definieren und transformieren (Filter, Aggregation) von Zeitreihen-Daten in IBM SPSS Statistics - Schätz- und Validierungsperioden - Diagramme für ZeitreihenUnivariate Beschreibung von Zeitreihen
- Glättung von Zeitreihen: Gleitende Durchschnitte, exponentielles Glätten, Holt-Winters-Methode - Transformation von Zeitreihen durch Filter – Differenzen erster und zweiter OrdnungZerlegung von Zeitreihen durch deterministische Modelle
Prozedur "Saisonale Zerlegung" - Komponentenmodelle: additiv und multiplikativ - Saisonale Strukturen bei Zeitreihen: Trend, Saisonbereinigung und Ableitung der Saisonfigur, Prognose und Residualanalyse - Temporale kausale Modelle - Lineare, parabolische, logistische, exponentielle Anpassung und Regression von Zeitreihen – Polynome - GütemaßePeriodizitäten bei Zeitreihen
Prozedur "Spektraldiagramme" - Trigonometrische Funktionen und ihre Bedeutung für periodische Trends – Perioden und Frequenzen - Periodogramm: Ableitung und Interpretation – Regressionsmodelle mit periodischen Schwingungen – Spektren und Spektralschätzung von ZeitreihenUnivariate lineare Zeitreihenmodelle mit ARIMA
Schätzung der Momentfunktionen (Erwartungswert, Auto-Kovarianz) - Auto-Korrelation: Lag-Operator, Erstellung und Interpretation des Korrelogramms - Stationarität bei Zeitreihen – White Noise-Prozesse - AR (Autoregressive)- Modelle - MA (Moving Average)-Modelle - ARMA und ARIMA-Modelle – Prognose - Residualanalyse – Statistische Tests bei linearen Zeitreihenmodellen – Gütemaße und ModellauswahlDozent/in
Unser Statistik- und Data-Mining-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken und als Business Intelligence-Berater. Zu seinen Kunden zählen Marktforschungsunternehmen oder Behörden wie der Deutsche Bundesrat sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung.Veröffentlichungen
- Grundlagen empirische Sozialforschung (Comelio Medien)
978-3-939701-23-1 - System und Systematik von Fragebögen (Comelio Medien)
978-3-939701-26-2 - Oracle SQL (Comelio Medien)
978-3-939701-41-5 - SQL Server 2012: Data Mining und multivariate Verfahren (Comelio Medien)
978-3-939701-85-9 - SQL und relationale Datenbanken (Comelio Medien)
978-3-939701-52-1