Inhalt
Multiple Regressionsanalyse
Wie stark ist der als linear unterstellte Zusammenhang zwischen metrisch-skalierten Variablen? – Modellformulierung – Schätzung der Regressionsfunktion – Prüfung der Regressionsfunktion – Prüfung der Regressionskoeffizienten – Prüfung der Modellprämissen
Zeitreihenanalyse
Wie stark ist der Zusammenhang zwischen einer metrisch-skalierten abhängigen Variablen und metrisch-skalierten Zeitreihendaten? – Visualisierung der Zeitreihe – Formulierung des Modells – Schätzung des Modells – Erstellung von Prognosen – Prüfung der Prognosegüte
Varianzanalyse (ANOVA)
Wie gut kann eine metrisch-skalierte abhängige Variable durch eine nominal skalierte unabhängige Variable erklärt werden? – Problemformulierung – Analyse der Abweichungsquadrate – Prüfung der statistischen Unabhängigkeit
Diskriminanzanalyse
Welche Variablen können gegebene Objektgruppen signifikant voneinander unterscheiden? – Definition der Gruppen – Formulierung, Schätzung und Prüfung der Diskriminanzfunktion – Prüfung der Merkmalsvariablen – Klassifikation neuer Elemente
Logistische Regression
Mit welcher Wahrscheinlichkeit können Objekte einer bestimmten Gruppe zugeordnet werden? – Modellformulierung – Schätzung der logistischen Regressionsfunktion – Interpretation der Regressionskoeffizienten – Prüfung des Gesamtmodells – Prüfung der Merkmalsvariablen
Kontingenzanalyse (Kreuztabellierung)
Besteht ein statistisch signifikanter Zusammenhang zwischen zwei nominal-skalierten Variablen? – Erstellung der Kreuztabelle – Ergebnisinterpretation – Prüfung der Zusammenhänge
Explorative Faktorenanalyse
Wie können metrisch-skalierte Variablen zu hypothetischen Größen (Faktoren) zusammengefasst werden? – Variablenauswahl und Korrelationsmatrix – Extraktion der Faktoren – Bestimmung der Kommunalitäten – Zahl der Faktoren – Faktorinterpretation – Bestimmung der Faktorenwerte
Clusteranalyse
Wie können Objekte, die durch verschiedene Merkmale beschrieben sind, zu homogenen Gruppen zusammenfasst werden? – Bestimmung der Ähnlichkeiten – Auswahl des Fusionsalgorithmus – Bestimmung der Clusteranzahl
Dozent/in
Unser Python-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Berater und auch Fachbuch-Autor zum Thema Datenbanken, statistische Datenanalyse, Data Mining und Python. Er unterrichtet deskriptive und induktive Statistik, multivariate Verfahren und Data Mining für die Bereiche Controlling und Marketing bzw. Marktforschung.
Veröffentlichungen
- Grundlagen empirische Sozialforschung ISBN 978-3-939701-23-1
- System und Systematik von Fragebögen ISBN 978-3-939701-26-2
Projekte
Im Bereich statistischer Datenanalyse führt Herr Skulschus als Berater und Projektleiter auch Projekte durch, bei denen Python zum Einsatz kommt oder mit individueller Software-Entwicklung in Java und .NET auf Datenbank-Basis Analyse- und Reporting-Lösungen entstehen.
Forschung
Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.