Inhalt
Data Mining und MS SQL Server - Einführung
Business Intelligence und Data Mining - Einsatzbereiche von Data Mining – Data Mining-Verfahren in Microsoft SQL Server und MS Excel – Server- und Client-Komponenten: MS SQL Server Analysis Services und Data Mining Add Ins für MS Excel und MS Visio - Aufgaben im Bereich Data Mining - Data Mining-Techniken im MS SQL Server - Projektzyklus (Datensammlung, Aufbereitung und Reinigung von Daten, Modellbildung, Modellbewertung, Reporting, Vorhersage, Integration in Anwendungen, Modellverwaltung)
Klassifikation mit Microsoft Decision Trees - Entscheidungsbäume
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung - DMX-Abfragen: Klassifikationsmodell, Regressionsmodell, Beziehungsmodell
Klassifikation mit Microsoft Naive Bayes
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung - DMX-Abfragen: Abhängigkeitsnetz, Attributprofile, Attributcharakteristika, Attributdiskrimierung
Microsoft Time Series - Zeitreihenanalyse
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung: Autoregression, Mehrere Zeitreihen, Saisonalität, Historische Vorhersagen, Vorhersagen cachen - DMX-Abfragen
Microsoft Clustering – Cluster Analyse
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung: Harte/weiche Clusterung, Skalierbare Clusterung, Geclusterte Vorhersagen - DMX-Abfragen: Cluster, Cluster-Wahrscheinlichkeit, Vorhersage-Histogramm, CaseLikelihood
Microsoft Sequence Clustering – Cluster Analyse
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung: Markov-Kette, Übergangsmatrix, Clusterung einer Markov-Kette, Dekomposition clustern - DMX-Abfragen
Microsoft Association Rules - Assoziationsanalyse
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung: Itemset, Unterstützung, Wahrscheinlichkeit/Konfidenz, Wichtigkeit/Wesentlichkeit - DMX-Abfragen
Microsoft Neural Network – Künstliche neuronale Netze
Vorstellung des Algorithmus - Parameter - Modellaufbau und Modellverwendung: Kombination und Aktivierung, Normalisierung und Zuordnung, Topologie eines neuronalen Netzes, Modelltraining - DMX-Abfragen
Skripte für Data Mining
XML/A (XML for Analysis): Skripte generieren und verwenden, Data Mining-Modelle aufbauen, verwalten und trainieren - DMX (Data Mining Extensions): Data Mining-Modelle aufbauen, verwalten und trainieren, Data Mining-Modelle abfragen
Integration und Reporting Services
Data Mining-Modelle in Integration Services verwenden – Data Mining-Ergebnisse in Reporting Services aufrufen
Dozent/in
Unser MS SQL Server-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie mit Schwerpunkt Wirtschaftsinformatik und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema MS SQL Server und als Business Intelligence-Berater.
Veröffentlichungen
- SQL Server 2012: Data Mining und multivariate Verfahren ISBN 978-3-939701-85-9
- MS SQL Server 2012 – XML-Integration mit T-SQL ISBN 978-3-939701-83-5
- MS SQL Server 2012 - T-SQL Abfragen und Analysen ISBN 978-3-939701-69-9
- Grundlagen empirische Sozialforschung ISBN 978-3-939701-23-1
Projekte
Als Berater und Projektleiter konzipiert Herr Skulschus Business Intelligence-Systeme mit MS SQL Server Analysis Services für OLAP udn Data Mining, mit MS SQL Server Integration Services als ETL-Plattform und auch mit MS SQL Server Reporting Services oder MS Excel für Reporting. Er ergänzt diese Data Warehouse-Technologien zusätzlich statistische Analysen, Data Mining-Module oder auch semantische Technologien. Zu seinen Kunden in diesem Bereich zählt auch der Deutsche Bundesrat.
Forschung
Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.